188 research outputs found

    Biohydrogenation of 22:6n-3 by Butyrivibrio proteoclasticus P18

    Get PDF
    Background: Rumen microbes metabolize 22:6n-3. However, pathways of 22:6n-3 biohydrogenation and ruminal microbes involved in this process are not known. In this study, we examine the ability of the well-known rumen biohydrogenating bacteria, Butyrivibrio fibrisolvens D1 and Butyrivibrio proteoclasticus P18, to hydrogenate 22:6n-3. Results: Butyrivibrio fibrisolvens D1 failed to hydrogenate 22:6n-3 (0.5 to 32 mu g/mL) in growth medium containing autoclaved ruminal fluid that either had or had not been centrifuged. Growth of B. fibrisolvens was delayed at the higher 22:6n-3 concentrations; however, total volatile fatty acid production was not affected. Butyrivibrio proteoclasticus P18 hydrogenated 22:6n-3 in growth medium containing autoclaved ruminal fluid that either had or had not been centrifuged. Biohydrogenation only started when volatile fatty acid production or growth of B. proteoclasticus P18 had been initiated, which might suggest that growth or metabolic activity is a prerequisite for the metabolism of 22:6n-3. The amount of 22:6n-3 hydrogenated was quantitatively recovered in several intermediate products eluting on the gas chromatogram between 22:6n-3 and 22:0. Formation of neither 22:0 nor 22:6 conjugated fatty acids was observed during 22:6n-3 metabolism. Extensive metabolism was observed at lower initial concentrations of 22:6n-3 (5, 10 and 20 mu g/mL) whereas increasing concentrations of 22:6n-3 (40 and 80 mu g/mL) inhibited its metabolism. Stearic acid formation (18:0) from 18:2n-6 by B. proteoclasticus P18 was retarded, but not completely inhibited, in the presence of 22:6n-3 and this effect was dependent on 22:6n-3 concentration. Conclusions: For the first time, our study identified ruminal bacteria with the ability to hydrogenate 22:6n-3. The gradual appearance of intermediates indicates that biohydrogenation of 22:6n-3 by B. proteoclasticus P18 occurs by pathways of isomerization and hydrogenation resulting in a variety of unsaturated 22 carbon fatty acids. During the simultaneous presence of 18:2n-6 and 22:6n-3, B. proteoclasticus P18 initiated 22:6n-3 metabolism before converting 18:1 isomers into 18:0

    Fish oil replacement in current aquaculture feed : is cholesterol a hidden treasure for fish nutrition?

    Get PDF
    Teleost fish, as with all vertebrates, are capable of synthesizing cholesterol and as such have no dietary requirement for it. Thus, limited research has addressed the potential effects of dietary cholesterol in fish, even if fish meal and fish oil are increasingly replaced by vegetable alternatives in modern aquafeeds, resulting in progressively reduced dietary cholesterol content. The objective of this study was to determine if dietary cholesterol fortification in a vegetable oil-based diet can manifest any effects on growth and feed utilization performance in the salmonid fish, the rainbow trout. In addition, given a series of studies in mammals have shown that dietary cholesterol can directly affect the fatty acid metabolism, the apparent in vivo fatty acid metabolism of fish fed the experimental diets was assessed. Triplicate groups of juvenile fish were fed one of two identical vegetable oil-based diets, with additional cholesterol fortification (high cholesterol, H-Chol) or without (low cholesterol, L-Chol), for 12 weeks. No effects were observed on growth and feed efficiency, however, in fish fed H-Col no biosynthesis of cholesterol, and a remarkably decreased apparent in vivo fatty acid b-oxidation were recorded, whilst in LChol fed fish, cholesterol was abundantly biosynthesised and an increased apparent in vivo fatty acid b-oxidation was observed. Only minor effects were observed on the activity of stearyl-CoA desaturase, but a significant increase was observed for both the transcription rate in liver and the apparent in vivo activity of the fatty acid D-6 desaturase and elongase, with increasing dietary cholesterol. This study showed that the possible effects of reduced dietary cholesterol in current aquafeeds can be significant and warrant future investigations

    Investigation of highly unsaturated fatty acid metabolism in the Asian sea bass, Lates calcarifer

    Get PDF
    Lates calcarifer, commonly known as the Asian sea bass or barramundi, is an interesting species that has great aquaculture potential in Asia including Malaysia and also Australia. We have investigated essential fatty acid metabolism in this species, focusing on the endogenous highly unsaturated fatty acid (HUFA) synthesis pathway using both biochemical and molecular biological approaches. Fatty acyl desaturase (Fad) and elongase (Elovl) cDNAs were cloned and functional characterization identified them as ∆6 Fad and Elovl5 elongase enzymes, respectively. The ∆6 Fad was equally active towards 18:3n-3 and 18:2n-6, and Elovl5 exhibited elongation activity for C18-20 and C20-22 elongation and a trace of C22-24 activity. The tissue profile of gene expression for ∆6 fad and elovl5 genes, showed brain to have the highest expression of both genes compared to all other tissues. The results of tissue fatty acid analysis showed that the brain contained more docosahexaenoic acid (DHA, 22:6n-3) than flesh, liver and intestine. The HUFA synthesis activity in isolated hepatocytes and enterocytes using [1-14C]18:3n-3 as substrate was very low with the only desaturated product detected being 18:4n-3. These findings indicate that L. calcarifer display an essential fatty acid pattern similar to other marine fish in that they appear unable to synthesize HUFA from C18 substrates. High expression of ∆6 fad and elovl5 genes in brain may indicate a role for these enzymes in maintaining high DHA levels in neural tissues through conversion of 20:5n-3

    Interactions between dietary docosahexaenoic acid and other long-chain polyunsaturated fatty acids on performance and fatty acid retention in post-smolt Atlantic salmon (Salmo salar)

    Get PDF
    A study with varying dietary inclusion levels (1, 5, 10, 15 and 20 g kg-1) of docosahexaenoic acid (DHA; 22:6n-3) was conducted with post-smolt (111 ± 2.6 g; mean ± S.) Atlantic salmon (Salmo salar) over a 9-week period. In addition to the series of DHA inclusion levels, the study included further diets that had DHA at 10 g kg-1 in combination with either eicosapentaenoic acid (EPA; 20:5n-3) or arachidonic acid (ARA; 20:4n-6), both also included at 10 g kg-1. An additional treatment with both EPA and DHA included at 5 g kg-1 (total of 10 g kg-1 long-chain polyunsaturated fatty acids, LC-PUFA) was also included. After a 9-week feeding period, fish were weighed, and carcass, blood and tissue samples collected. A minor improvement in growth was seen with increasing inclusion of DHA. However, the addition of EPA further improved growth response while addition of ARA had no effect on growth. As with most lipid studies, the fatty acid composition of the whole body lipids generally reflected that of the diets. However, there were notable exceptions to this, and these implicate some interactions among the different LC-PUFA in terms of the fatty acid bio- chemistry in this species. At very low inclusion levels, DHA retention was substantially higher (*250 %) than that at all other inclusion levels (31–58 %). The inclusion of EPA in the diet also had a positive effect on the retention efficiency of DHA. However, EPA retention was highly variable and at low DHA inclusion levels there was a net loss of EPA as this fatty acid was most likely elongated to produce DHA, consistent with increased DHA retention with addi- tional EPA in the diet. Retention of DPA (22:5n-3) was high at low levels of DHA, but diminished with increasing DHA inclusion, similar to that seen with DHA retention. The addition of EPA to the diet resulted in a substantial increase in the efficiency of DPA retention; the inclusion of ARA had the opposite effect. Retention of ARA was unaffected by DHA inclusion, but the addition of either EPA or ARA to the diet resulted in a substantial reduction in the efficiency of ARA retention. No effects of dietary treatment were noted on the retention of either linolenic (18:3n-3) or linoleic (18:2n-6) acids. When the total n-3 LC-PUFA content of the diet was the same but consisted of either DHA alone or as a combination of EPA plus DHA, the performance effects were similar

    Nutritional and environmental regulation of the synthesis of highly unsaturated fatty acids and of fatty-acid oxidation in Atlantic salmon (Salmo salar L.) enterocytes and hepatocytes

    Get PDF
    The aim was to determine if highly unsaturated fatty acid (HUFA) synthesis and fatty acid oxidation in Atlantic salmon (Salmo salar L.) intestine was under environmental and/or seasonal regulation. Triplicate groups of salmon were grown through a full two-year cycle on two diets containing either fish oil (FO), or a diet with 75% of the FO replaced by a vegetable oil (VO) blend containing rapeseed, palm and linseed oils. At key points in the life cycle, fatty acyl desaturation/elongation (HUFA synthesis) and oxidation activities were determined in enterocytes and hepatocytes using [1-14C]18:3n-3 as substrate. As observed previously, HUFA synthesis in hepatocytes showed peak activity at seawater transfer and declined thereafter, with activity consistently greater in fish fed the VO diet. In fish fed FO, HUFA synthesis in enterocytes in the freshwater stage was at a similar level to that in hepatocytes. However, HUFA synthesis in enterocytes increased rapidly after seawater transfer and remained high for some months after transfer before decreasing to levels that were again similar to those observed in hepatocytes. Generally, enterocyte HUFA synthesis was higher in fish fed the VO diet compared to the FO diet. Oxidation of [1-14C]18:3n-3 in hepatocytes from fish fed FO tended to decrease during the freshwater phase but then increased steeply, peaking just after transfer before decreasing during the remaining seawater phase. At the peak in oxidation activity around seawater transfer, activity was significantly lower in fish fed VO compared to fish fed FO. In enterocytes, oxidation of [1-14C]18:3 in fish fed FO showed a peak in activity just prior to seawater transfer. In fish fed VO, other than high activity at 9 months, the pattern was similar to that obtained in enterocytes from fish fed FO with a high activity around seawater transfer and declining activity in seawater. In conclusion, fatty acid metabolism in intestinal cells appeared to be under dual nutritional and environmental or seasonal regulation. The temporal patterns for fatty acid oxidation were generally similar in the two cell types, but HUFA synthesis in enterocytes peaked over the summer seawater phase rather than at transfer, as with hepatocytes, suggesting possibly different regulatory cues

    Effect of salinity on the biosynthesis of n-3 long-chain polyunsaturated fatty acids in silverside Chirostoma estor

    Get PDF
    The genus Chirostoma (silversides) belongs to the family Atherinopsidae, which contains around 150 species, most of which are marine. However, Mexican silverside (Chirostoma estor) is one of the few representatives of freshwater atherinopsids and is only found in some lakes of the Mexican Central Plateau. However, studies have shown that C. estor has improved survival, growth and development when cultured in water conditions with increased salinity. In addition, C. estor displays an unusual fatty acid composition for a freshwater fish with high docosahexaenoic acid (DHA) : eicosapentaenoic acid (EPA) ratios. Freshwater and marine fish species display very different essential fatty acid metabolism and requirements and so the present study investigated long-chain polyunsaturated fatty acid (LC-PUFA) biosynthesis to determine the capacity of C. estor for endogenous production of EPA and DHA, and the effect that salinity has on these pathways. Briefly, C. estor were maintained at three salinities (0, 5 and 15 ppt) and the metabolism of 14C-labelled 18:3n-3 determined in isolated hepatocyte and enterocyte cells. The results showed that C. estor has the capacity for endogenous biosynthesis of LC-PUFA from 18-carbon fatty acid precursors, but that the pathway was essentially only active in saline conditions with virtually no activity in cells isolated from fish grown in freshwater. The activity of the LCPUFA biosynthesis pathway was also higher in cells isolated from fish at 15 ppt compared to fish at 5 ppt, The pathway was around 5-fold higher in hepatocytes compared to enterocytes, although the majority of 18:3n-3 was converted to 18:4n-3 and 20:4n-3 in hepatocytes whereas the proportions of 18:3n-3 converted to EPA and DHA were higher in enterocytes. The data were consistent with the hypothesis that conversion of EPA to DHA could contribute, at least in part, to the generally high DHA:EPA ratios observed in the tissue lipids of C. estor

    Performance, feed utilization, and hepatic metabolic response of weaned juvenile Atlantic bluefin tuna (Thunnus thynnus L.): effects of dietary lipid level and source

    Get PDF
    The development of formulated diets and feeds is essential to increase production of farmed tuna species. There is limited knowledge of this topic, mainly on Pacific Bluefin tuna (Thunnus orientalis) in Japan, whereas no major attempts have been made with Atlantic Bluefin tuna (Thunnus thynnus; ABT). In the present study, two trials were performed using inert formulated diets as on-growing feeds for weaned ABT juvenile in order to establish adequate dietary levels of both lipid and omega-3 long-chain polyunsaturated fatty acids (LC-PUFA). In a first trial, ABT (initial weight = 2.9±0.9g) were fed for 10 days with either a commercial (Magokoro®, MGK) or two experimental feeds with two different lipid levels (15 or 20%) using krill oil (KO) as the single lipid source in order to estimate the suitable lipid content. Fish fed MGK displayed the highest growth, followed by 15KO, with no differences in fish survival. Thus, a lipid content of 15% was considered better than 20% for ABT juveniles. In the second trial, fish (initial weight = 3.3 ± 0.6g) were fed either MGK, 15KO or a feed containing 15% lipid with a combination (1:1, v/v) KO and rapeseed oil (RO) (15KORO). Fish fed 15KO and 15KORO showed the highest growth in terms of weight and fork length (including weight gain and SGR). Increasing dietary lipid level or adding RO to the feeds did not increase liver lipid content. The liver fatty acid profile largely reflected dietary intake confirming very limited LC-PUFA biosynthetic activity for this teleost species. In this respect, liver of fish fed 15KO and 20KO displayed the highest contents of docosahexaenoic acid (DHA). The hepatic expression of genes of lipid and fatty acid metabolism, transcription factors, and antioxidant enzymes was investigated with many of the genes showing regulation by both dietary lipid and LC-PUFA contents. The present study showed promising results that suggested ABT juveniles can be on grown on inert dry feeds that supported good fish growth and the accumulation of the health-promoting fatty acid DHA. Further studies are required in order to fully elucidate lipid and fatty acid requirements of this iconic species regarding dietary sources and production costs.En prensa1,52

    Does dietary tocopherol level affect fatty acid metabolism in fish?

    Get PDF
    Fish are a rich source of the n-3 polyunsaturated fatty acids (PUFA), particularly the highly unsaturated fatty acids (HUFA), eicosapentaenoic (EPA; 20:5n-3) and docosahexaenoic (DHA; 22:6n-3) acids, which are vital constituents for cell membrane structure and function, but which are also highly susceptible to attack by oxygen and other organic radicals. Resultant damage to PUFA in membrane phospholipids can have serious consequences for cell membrane structure and function, with potential pathological effects on cells and tissues. Physiological antioxidant protection involves both endogenous components, such as free radical scavenging enzymes, and exogenous dietary micronutrients including tocopherols and tocotrienols, the vitamin E-type compounds, widely regarded as the primary lipid soluble antioxidants. The antioxidant activities of tocopherols are imparted by their ability to donate their phenolic hydrogen atoms to lipid (fatty acid) free radicals resulting in the stabilisation of the latter and the termination of the lipid peroxidation chain reaction. However, tocopherols can also prevent PUFA peroxidation by acting as quenchers of singlet oxygen. Recent studies on marine fish have shown correlations between dietary and tissue PUFA/tocopherol ratios and incidence of lipid peroxidation as indicated by the levels of TBARS and isoprostanes. These studies also showed that feeding diets containing oxidised oil significantly affected the activities of liver antioxidant defence enzymes and that dietary tocopherol partially attenuated these effects. However, there is evidence that dietary tocopherols can affect fatty acid metabolism in other ways. An increase in membrane PUFA was observed in rats deficient in vitamin E. This was suggested to be due to over production of PUFA arising from increased activity of the desaturation/elongation mechanisms responsible for the synthesis of PUFA. Consistent with this, increased desaturation of 18:3n-3 and 20:5n-3 in hepatocytes from salmon fed diets deficient in tocopherol and/or astaxanthin has been observed. Although the mechanism is unclear, tocopherols may influence biosynthesis of n-3PUFA through alteration of cellular oxidation potential or “peroxide tone”

    Algicidal activity of polyunsaturated fatty acids derived from Ulva fasciata and U. pertusa (Ulvaceae, Chlorophyta) on phytoplankton

    Get PDF
    Isolation of algicidal compounds from Ulva fasciata revealed that the algicidal substances were the polyunsaturated fatty acids (PUFAs) as hexadeca-4,7,10,13-tetraenoic acid (HDTA) C16:4 n-3, octadeca-6,9,12,15- tetraenoic acid (ODTA) C18:4 n-3, α-linolenic acid (ALA) C18:3 n-3 and linoleic acid (LA) C18:2 n-6. The fatty acid composition of four species of Ulvaceae (U. fasciata, U. pertusa, U. arasakii and U. conglobota) was analyzed by capillary gas chromatography to investigate the relationship with the algicidal activity. The results indicate that highly algicidal species, U. fasciata and U. pertusa, showed higher contents of C16:4 n-3, C18:3 n-3, and C18:4 n-3. Concentrations of these PUFAs released from the seaweed in the culture medium were also analyzed. These PUFAs were found to be significantly active against Chattonella antiqua, C. marina, Fibrocapsa japonica, Heterosigma akashiwo, Karenia mikimotoi, moderately effective against Heterocapsa circularisquama, Prorocentrum minimum, P. sigmoides, Scrippsiella trochoidea, whereas low effective against Alexandrium catenella and Cochlodinium polykrikoides. It is suggested that the PUFAs are useful mitigation agents to remove several harmful effects without causing detrimental effects on surrounding marine living organisms
    corecore